SquconvNet: Deep Sequencer Convolutional Network for Hyperspectral Image Classification
نویسندگان
چکیده
The application of Transformer in computer vision has had the most significant influence all deep learning developments over past five years. In addition to exceptional performance convolutional neural networks (CNN) hyperspectral image (HSI) classification, begun be applied HSI classification. However, for time being, not produced satisfactory results Recently, field creators Sequencer have proposed a structure that substitutes self-attention layer with BiLSTM2D and achieves results. As result, this paper proposes unique network called SquconvNet, combines CNN block improve paper, we conducted rigorous classification experiments on three relevant baseline datasets evaluate method. experimental show our method clear advantages terms accuracy stability.
منابع مشابه
Deep Convolutional Neural Networks for Hyperspectral Image Classification
Recently, convolutional neural networks have demonstrated excellent performance on various visual tasks, including the classification of common two-dimensional images. In this paper, deep convolutional neural networks are employed to classify hyperspectral images directly in spectral domain. More specifically, the architecture of the proposed classifier contains five layers with weights which a...
متن کاملA Diversified Deep Belief Network for Hyperspectral Image Classification
In recent years, researches in remote sensing demonstrated that deep architectures with multiple layers can potentially extract abstract and invariant features for better hyperspectral image classification. Since the usual real-world hyperspectral image classification task cannot provide enough training samples for a supervised deep model, such as convolutional neural networks (CNNs), this work...
متن کاملHD-CNN: Hierarchical Deep Convolutional Neural Network for Image Classification
Improve classification accuracy of deep CNNs using hierarchical classification scheme. Group classes based on confusion matrix. Use networks of identical topology at various levels.
متن کاملDeep Convolutional Decision Jungle for Image Classification
We propose a novel method called deep convolutional decision jungle (CDJ) and its learning algorithm for image classification. The CDJ maintains the structure of standard convolutional neural networks (CNNs), i.e. multiple layers of multiple responsemaps fully connected. Each responsemap—or node—in both the convolutional and fully-connected layers selectively respond to class labels s.t. each d...
متن کاملPolSAR Image Classification Based on Deep Convolutional Neural Network
For introducing the advantages of feature learning and multilayer network in the interpretation of Polarimetric synthetic aperture radar (PolSAR) image, a classification algorithm based on deep convolutional neural network is proposed, and is used for PolSAR image classification. Firstly, a special convolutional neural network (CNN) for PolSAR image is constructed, secondly, a large number of P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2023
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs15040983